Article ID Journal Published Year Pages File Type
6875475 Theoretical Computer Science 2018 12 Pages PDF
Abstract
In the Canadian traveler problem, we are given an edge weighted graph with two specified vertices s and t and a probability distribution over the edges that tells which edges are present. The goal is to minimize the expected length of a walk from s to t. However, we only get to know whether an edge is active the moment we visit one of its incident vertices. Under the assumption that the edges are active independently, we show NP-hardness on series-parallel graphs and give results on the adaptivity gap. We further show that this problem is NP-hard on disjoint-path graphs and cactus graphs when the distribution is given by a list of scenarios. We also consider a special case called the multi-target graph search problem. In this problem, we are given a probability distribution over subsets of vertices. The distribution specifies which set of vertices has targets. The goal is to minimize the expected length of the walk until finding a target. For the independent decision model, we show that the problem is NP-hard on trees and give a (3.59+ϵ)-approximation for trees and a (14.4+ϵ)-approximation for general metrics. For the scenario model, we show NP-hardness on star graphs.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,