Article ID Journal Published Year Pages File Type
6875882 Theoretical Computer Science 2017 16 Pages PDF
Abstract
Motivated by a derandomization of Markov chain Monte Carlo (MCMC), this paper investigates a deterministic random walk, which is a deterministic process analogous to a random walk. There is some recent progress in the analysis of the vertex-wise discrepancy (i.e., L∞-discrepancy), while little is known about the total variation discrepancy (i.e., L1-discrepancy), which plays an important role in the analysis of an FPRAS based on MCMC. This paper investigates the L1-discrepancy between the expected number of tokens in a Markov chain and the number of tokens in its corresponding deterministic random walk. First, we give a simple but nontrivial upper bound O(mt⁎) of the L1-discrepancy for any ergodic Markov chains, where m is the number of edges of the transition diagram and t⁎ is the mixing time of the Markov chain. Then, we give a better upper bound O(mt⁎) for non-oblivious deterministic random walks, if the corresponding Markov chain is ergodic and lazy. We also present some lower bounds.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , ,