| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 6875957 | Theoretical Computer Science | 2016 | 11 Pages |
Abstract
Consider a deck of real cards with faces that are either black or red and backs that are all identical. Then, using two cards of different colors, we can commit a secret bit to a pair of face-down cards so that its order (i.e., black to red, or red to black) represents the value of the bit. Given such two commitments (consisting of four face-down cards in total) together with one additional black card, the “five-card trick” invented in 1989 by den Boer securely computes the conjunction of the two secret bits. In 2012, it was shown that such a two-variable secure AND computation can be done with no additional card. In this paper, we generalize this result to an arbitrary number of variables: we show that, given any number of commitments, their conjunction can be securely computed with no additional card.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
Takaaki Mizuki,
