Article ID Journal Published Year Pages File Type
6876540 Computer-Aided Design 2015 11 Pages PDF
Abstract
Our framework uses Online Multi-Class LPBoost (OMCLP) to train/update a segmentation model progressively, which includes several Online Random forests (ORFs) as the weak learners. Then, it performs graph cuts optimization to segment the 3D shape by using the trained/updated segmentation model as the optimal data term. There exist three features of our framework. Firstly, the segmentation model can be trained gradually during the collection of the shapes. Secondly, the segmentation results can be refined progressively until users' requirements are met. Thirdly, the segmentation model can be updated incrementally without retraining all shapes when users add new shapes. Experimental results demonstrate the effectiveness of our approach.
Related Topics
Physical Sciences and Engineering Computer Science Computer Graphics and Computer-Aided Design
Authors
, , , ,