Article ID Journal Published Year Pages File Type
6879791 AEU - International Journal of Electronics and Communications 2014 11 Pages PDF
Abstract
End-to-end traffic, which describes the inherent characteristics and end-to-end behaviors of communication networks, is the crucial input parameter of network management and network traffic engineering. This paper proposes a new reconstruction algorithm to develop the research on reconstruction of end-to-end traffic in large-scale communication networks. We firstly conduct the time-frequency analysis on end-to-end traffic, and then localize its features to gain its time-frequency properties before decomposing it into the low-frequency and high-frequency components. We find that if decomposing appropriately, the low-frequency component of end-to-end traffic can accurately reflect its change trend, while its high-frequency component can well show the burst and fluctuation nature. This motivates us to find a reasonable time-frequency decomposition strategy to extract the low-frequency and high-frequency components of end-to-end traffic. Moreover, this further inspires us to use the regressive model to model the low-frequency part, exploit artificial neural network to characterize the high-frequency component, and then combine these two parts according to the regressive model and artificial neural network to precisely reconstruct end-to-end traffic. Simulation results show that in contrast to previous methods our algorithm is much more effective and promising.
Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , , ,