Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6879939 | Computer Communications | 2018 | 34 Pages |
Abstract
Ultra-densification and efficient spectrum utilization are key features for the next 5G wireless networks to address the well-known challenges of high capacity demands and mobile data traffic explosion. In this article, a physical layer and a medium access control (MAC) sublayer are presented for small cells to operate in the 5Â GHz unlicensed national information infrastructure (UNII) band. The physical layer is based on filter bank multi-carrier modulation able to achieve better spectral efficiency and access flexibility. The MAC protocol is based on beacon-enabled superframe consisting of scheduled and contention access schemes. The proposed UNII-MAC design relies on a listen-before-talk procedure in order to comply with ETSI regulations and to fairly coexist with neighboring systems sharing the same band. The performance of the UNII-MAC is then evaluated in dense indoor/outdoor deployment scenarios under various parameters and traffic patterns. Moreover, the coexistence between UNII-MAC and WiFi systems is reported. Based on the obtained results, we provide recommendations for 5G small cell deployment in dense environments.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Networks and Communications
Authors
Rida El Chall, Benoit Miscopein, Dimitri Kténas,