Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6882574 | Computer Networks | 2018 | 21 Pages |
Abstract
Recent development of wireless communication systems and standards is characterized by constant increase of allocated spectrum resources. Since lower frequency ranges cannot provide sufficient amount of bandwidth, new bands are allocated at higher frequencies, for which operators resort to deploy more base stations to ensure the same coverage and to utilize more efficiently higher frequencies spectrum. Striving for deployment flexibility, mobile operators can consider deploying low power nodes that could be either small cells connected via the wired backhaul or relays that utilize the same spectrum and the wireless access technology. However, even though low power nodes provide a greater flexibility in terms of where they can be deployed, they also create new challenges. In particular, it is often the case that operators need to balance carefully between how many additional low power nodes it is necessary to install versus potential gains of the whole system. Thus, in this study we aim to develop a model that can find optimal network configuration for low power nodes assisting operators network deployment process. The outcome of the analytical model is complemented by extensive dynamic system level simulations, by means of which we analyze overall system performance for the obtained solutions. We also show that deviations from optimal configurations can lead to significantly worse system performance.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Networks and Communications
Authors
Mikhail Zolotukhin, Alexander Sayenko, Timo Hämäläinen,