Article ID Journal Published Year Pages File Type
6884196 Computers & Security 2016 16 Pages PDF
Abstract
Modern computer networks generate significant volume of behavioural system logs on a daily basis. Such networks comprise many computers with Internet connectivity, and many users who access the Web and utilise Cloud services make use of numerous devices connected to the network on an ad-hoc basis. Measuring the risk of cyber attacks and identifying the most recent modus-operandi of cyber criminals on large computer networks can be difficult due to the wide range of services and applications running within the network, the multiple vulnerabilities associated with each application, the severity associated with each vulnerability, and the ever-changing attack vector of cyber criminals. In this paper we propose a framework to represent these features, enabling real-time network enumeration and traffic analysis to be carried out, in order to produce quantified measures of risk at specific points in time. We validate the approach using data from a University network, with a data collection consisting of 462,787 instances representing threats measured over a 144 hour period. Our analysis can be generalised to a variety of other contexts.
Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , ,