Article ID Journal Published Year Pages File Type
6885806 Microprocessors and Microsystems 2018 10 Pages PDF
Abstract
In this work, an embedded system for point- to-point secure transmission of encrypted signals was developed. This portable system, which is also experimentally analyzed includes, includes a pair of digital signal controllers dsPIC33FJ128MC802 and the algorithm is based on the Rössler oscillator with constant and chaotic parameters. Therefore, the synchronization between both devices was analyzed via the measurement of the synchronization error and the transient time. The viability of the complete system was experimentally studied, by sending encrypted signals by wired and wireless methods from the master device to the slave, where these are decrypted. As the originally acquired signals show some contamination of white noise, the transmitted and decoded signals are filtered through a Kalman filter embedded in the same algorithm, reaching -8 dB of noise diminution approximately. Afterwards, the decoded signals are compared with the initial ones by the Pearson correlation coefficient. When a synchronization error is fixed at 1 × 10−5, the experimental results exhibit transient times of 4.45 s and 2.69 min for the wired and wireless transmitting methods, respectively. However, as the estimated correlation coefficients are ranging in the interval 0.99963 < R < to 0.999999. Hence, the initial encrypted signal is entirely received by the slave device. The system is able to works in real-time, nevertheless, the determined sampling frequency is drastically diminished when the point-to-point communication is carried out via wireless
Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , , ,