Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6891616 | Computer Science Review | 2018 | 13 Pages |
Abstract
Change point detection in social networks is an important element in developing the understanding of dynamic systems. This complex and growing area of research has no clear guidelines on what methods to use or in which circumstances. This paper critically discusses several possible network metrics to be used for a change point detection problem and conducts an experimental, comparative analysis using the Enron and MIT networks. Bayesian change point detection analysis is conducted on different global graph metrics (Size, Density, Average Clustering Coefficient, Average Shortest Path) as well as metrics derived from the Hierarchical and Block models (Entropy, Edge Probability, No. of Communities, Hierarchy Level Membership). The results produced the posterior probability of a change point at weekly time intervals that were analysed against ground truth change points using precision and recall measures. Results suggest that computationally heavy generative models offer only slightly better results compared to some of the global graph metrics. The simplest metrics used in the experiments, i.e. nodes and links numbers, are the recommended choice for detecting overall structural changes.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science (General)
Authors
Lucy Kendrick, Katarzyna Musial, Bogdan Gabrys,