Article ID Journal Published Year Pages File Type
6892094 Computers & Mathematics with Applications 2018 15 Pages PDF
Abstract
We present a computational model of this process which involves three novelties: (a) a very low number of degrees of freedom which yet yields a comparatively high accuracy. The number of degrees of freedom is, additionally, kept practically constant throughout the duration of the simulation. This is achieved by means of the multi-level hp-finite element method. Its exponential convergence is verified for the first time against a semi-analytic, three-dimensional transient linear thermal benchmark with a traveling source term which models a laser beam. ( b) A hierarchical treatment of the state variables. To this end, the state of the material is managed on a separate, octree-like grid. This material grid may refine or coarsen independently of the discretization used for the temperature field. This methodology is verified against an analytic benchmark of a melting bar computed in three dimensions in which phase changes of the material occur on a rapidly advancing front. (c) The combination of these technologies to demonstrate its potential for the computational modeling of selective laser melting processes. To this end, the computational methodology is extended by the finite cell method which allows for accurate simulations in an embedded domain setting. This opens the new modeling possibility that neither a scan vector nor a layer of material needs to conform to the discretization of the finite element mesh but can form only a fraction within the discretization of the field- and state variables.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , , ,