Article ID Journal Published Year Pages File Type
6893753 Engineering Science and Technology, an International Journal 2017 7 Pages PDF
Abstract
Firstly, a model comprised of mass, energy and momentum conservation equations are developed. Then, Coupled with real gas model and heat transfer model in formation, a comprehensive model is established. The mass, momentum and energy balance equations are solved simultaneously with finite difference method on space and the iteration method. Finally, sensitivity analysis is conducted. Results show that (a). In order to obtain a higher superheat degree, a higher injection temperature and a lower mass fraction of CO2 are suggested. (b). Superheat degree decreases with increasing injection pressure or with increasing mass fraction of CO2. (c). Superheat degree increases with increasing mass flow rate. (d). Superheat degree decreases with increasing mass fraction of CO2.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,