Article ID Journal Published Year Pages File Type
6896424 European Journal of Operational Research 2015 11 Pages PDF
Abstract
This paper introduces and studies the minimum edge blocker dominating set problem (EBDP), which is formulated as follows. Given a vertex-weighted undirected graph and r > 0, remove a minimum number of edges so that the weight of any dominating set in the remaining graph is at least r. Dominating sets are used in a wide variety of graph-based applications such as the analysis of wireless and social networks. We show that the decision version of EBDP is NP-hard for any fixed r > 0. We present an analytical lower bound for the value of an optimal solution to EBDP and formulate this problem as a linear 0-1 program with a large number of constraints. We also study the convex hull of feasible solutions to EBDP and identify facet-inducing inequalities for this polytope. Furthermore, we develop the first exact algorithm for solving EBDP, which solves the proposed formulation by a branch-and-cut approach where nontrivial constraints are applied in a lazy fashion. Finally, we also provide the computational results obtained by using our approach on a test-bed of randomly generated instances and real-life power-law graphs.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,