Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6897620 | European Journal of Operational Research | 2014 | 8 Pages |
Abstract
The derivation of a priority vector from a pair-wise comparison matrix (PCM) is an important issue in the Analytic Hierarchy Process (AHP). The existing methods for the priority vector derivation from PCM include eigenvector method (EV), weighted least squares method (WLS), additive normalization method (AN), logarithmic least squares method (LLS), etc. The derived priority vector should be as similar to each column vector of the PCM as possible if a pair-wise comparison matrix (PCM) is not perfectly consistent. Therefore, a cosine maximization method (CM) based on similarity measure is proposed, which maximizes the sum of the cosine of the angle between the priority vector and each column vector of a PCM. An optimization model for the CM is proposed to derive the reliable priority vector. Using three numerical examples, the CM is compared with the other prioritization methods based on two performance evaluation criteria: Euclidean distance and minimum violation. The results show that the CM is flexible and efficient.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science (General)
Authors
Gang Kou, Changsheng Lin,