Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6903186 | Swarm and Evolutionary Computation | 2018 | 42 Pages |
Abstract
Several feature weight optimization techniques have been proposed for similarity functions in analogy-based estimation (ABE); however, no consensus regarding the method and settings suitable for producing accurate estimates has been reached. We investigate the effectiveness of differential evolution (DE) algorithm, for optimizing the feature weights of similarity functions of ABE by applying five successful mutation strategies. We have named this empirical analysis as DE in analogy-based software development effort estimation (DABE). We have conducted extensive simulation study on the PROMISE repository test suite to estimate the effectiveness of our proposed DABE technique. We find signiï¬cant improvements in predictive performance of our DABE technique over ABE, particle swarm optimization-based feature weight optimization in ABE, genetic algorithm-based feature weight optimization in ABE, self-adaptive DE-based feature weight optimization ABE, adaptive differential evolution with optional external archive-based feature weight optimization ABE, functional link artificial neural network,artificial neural network with back propagation learning based software development effort estimation (SDEE), and radial basis function-based SDEE.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science (General)
Authors
Tirimula Rao Benala, Rajib Mall,