Article ID Journal Published Year Pages File Type
6903204 Swarm and Evolutionary Computation 2018 17 Pages PDF
Abstract
Multiobjective algorithms are powerful in tackling complex optmization problems mathematically represented by two or more conflicting objective functions and their constraints. Sorting a set of current solutions across non-dominated fronts is the key step for the searching process to finally identify which ones are the best solutions. To perform that step, a high computational effort is demanded, especially if the size of the solution set is huge or the mathematical model corresponds to a many-objective problem. In order to overcome this, a new labeling-oriented algorithm is proposed in this paper to speed up the solution-to-front assignment by avoiding usual dominance tests. Along with this algorithm, called Labeling-Oriented Non-dominated Sorting Algorithm (LONSA), the associated methodology is carefully detailed to clearly explain how the classification of the solution set is successfully achieved. This work presents a comparison between LONSA and other well-known algorithms usually found in the literature. The simulation results have shown a better performance of the proposed algorithm against nine chosen strategies in terms of computational time as well as number of comparisons.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , ,