Article ID Journal Published Year Pages File Type
6903229 Applied Soft Computing 2018 25 Pages PDF
Abstract
The human immunodeficiency virus (HIV) is the cause of acquired immunodeficiency syndrome (AIDS), which has profound implications in terms of both economic burden and loss of life. Modeling and examination of the HIV protease cleavage of amino acid sequences can contribute to control of this disease and production of more effective drugs. The present paper introduces a new method for encoding and characterization of amino acid sequences and a new model for the prediction of amino acid sequence cleavage by HIV protease. The proposed encoding scheme utilizes a combination of amino acids' spatial and structural features in conjunction with 20 amino acid sequences to make sure that their physicochemical and sequencing features are all taken into account. The proposed HIV-1 amino acid cleavage prediction model is developed with the combination of genetic programming and support vector machine. The results of evaluations performed on various datasets demonstrate the superior performance of the proposed encoding and better accuracy of the proposed HIV-1 cleavage prediction model as compared to the state-of-the-art methods.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,