Article ID Journal Published Year Pages File Type
6903426 Applied Soft Computing 2018 52 Pages PDF
Abstract
This study presents a new soft computing method to create an accurate and reliable model capable of determining three key points of the comprehensive force-displacement curve of bolted components in steel structures. To this end, a database with the results of a set of finite element (FE) simulations, which represent real responses of bolted components, is utilized to create a stacking ensemble model that combines the predictions of different parsimonious base models. The innovative proposal of this study is using GA-PARSIMONY, a previously published GA-method which searches parsimonious models by optimizing feature selection and hyperparameter optimization processes. Therefore, parsimonious solutions created with a variety of machine learning methods are combined by means of a nested cross-validation scheme in a unique meta-learner in order to increase diversity and minimize the generalization error rate. The results reveal that efficiently combining parsimonious models provides more accurate and reliable predictions as compared to other methods. Thus, the informational model is able to replace costly FE simulations without significantly comprising accuracy and could be implemented in structural analysis software.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,