Article ID Journal Published Year Pages File Type
6904376 Applied Soft Computing 2017 39 Pages PDF
Abstract
Multi-objective evolutionary algorithm based on decomposition (MOEA/D) has been considered as a promising method for solving multi-objective optimization problems (MOPs). It devotes most of its effort on convergence by optimizing a set of scalar optimization subproblems in a collaborative manner, while maintaining the diversity by using a set of uniformly distributed weight vectors. However, more recent studies illustrated that MOEA/D faces difficulties on MOPs with complicated Pareto fronts, mainly because the uniformity of weight vectors no longer lead to an evenly scattered approximation of the Pareto fronts in these cases. To remedy this, we suggest replacing the ideal point in the reciprocal Tchebycheff decomposition method with a more optimistic utopian point, with the aim of alleviating the sensitivity of MOEA/D to the Pareto front shape of MOPs. Experimental studies on benchmark and real-world problems have shown that such simple modification can significantly improve the performances of MOEA/D with reciprocal Tchebycheff decomposition on MOPs with complicated Pareto fronts.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,