Article ID Journal Published Year Pages File Type
6915270 Computer Methods in Applied Mechanics and Engineering 2018 31 Pages PDF
Abstract
Robust and efficient discretization methods for coupled poromechanical problems are critical to address a wide range of problems related to civil infrastructure, energy resources, and environmental sustainability. In this work, we propose a new finite element formulation for coupled poromechanical problems that ensures local (element-wise) mass conservation. The proposed formulation draws on the so-called enriched Galerkin method, which augments piecewise constant functions to the classical continuous Galerkin finite element method. These additional degrees of freedom allow us to obtain a locally conservative and nonconforming solution for the pore pressure field. The enriched and continuous Galerkin formulations are compared in several numerical examples ranging from a benchmark consolidation problem to a complex problem that involves plastic deformation due to unsaturated flow in a heterogeneous porous medium. The results of these examples show not only that the proposed method provides local mass conservation, but also that local mass conservation can be crucial to accurate simulation of deformation processes in fluid-infiltrated porous materials.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,