Article ID Journal Published Year Pages File Type
6915291 Computer Methods in Applied Mechanics and Engineering 2018 48 Pages PDF
Abstract
We introduce a novel meshfree Galerkin method for the solution of Reissner-Mindlin plate problems that is written in terms of the primitive variables only (i.e., rotations and transverse displacement) and is devoid of shear-locking. The proposed approach uses linear maximum-entropy basis functions for field variables approximation and is built variationally on a two-field potential energy functional wherein the shear strain, written in terms of the primitive variables, is computed via a volume-averaged nodal projection operator that is constructed from the Kirchhoff constraint of the three-field mixed weak form. The meshfree approximation is constructed over a set of scattered nodes that are obtained from an integration mesh of three-node triangles on which the meshfree stiffness matrix and nodal force vector are numerically integrated. The stability of the method is rendered by adding bubble-like enrichment to the rotation degrees of freedom. Some benchmark problems are presented to demonstrate the accuracy and performance of the proposed method for a wide range of plate thicknesses.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , ,