Article ID Journal Published Year Pages File Type
6915415 Computer Methods in Applied Mechanics and Engineering 2018 24 Pages PDF
Abstract
Finite elasticity problems commonly include material and geometric nonlinearities and are solved using various numerical methods. However, for highly nonlinear problems, achieving convergence is relatively difficult and requires small load step sizes. In this work, we present a new method to transform the discretized governing equations so that the transformed problem has significantly reduced nonlinearity and, therefore, Newton solvers exhibit improved convergence properties. We study exponential-type nonlinearity in soft tissues and geometric nonlinearity in compression, and propose novel formulations for the two problems. We test the new formulations in several numerical examples and show significant reduction in iterations required for convergence, especially at large load steps. Notably, the proposed formulation is capable of yielding convergent solution even when 10-100 times larger load steps are applied. The proposed framework is generic and can be applied to other types of nonlinearities as well.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,