Article ID Journal Published Year Pages File Type
6920342 Computerized Medical Imaging and Graphics 2013 12 Pages PDF
Abstract
Low-dose computed tomography (CT) reduces radiation exposure but decreases signal-to-noise ratio (SNR) and diagnostic capabilities. Noise compensation can improve SNR so low-dose CT can provide valuable information for diagnosis without risking patient radiation exposure. In this study, a novel noise-compensated CT reconstruction method that uses spatially adaptive Monte-Carlo sampling to produce noise-compensated reconstructions is investigated. By adapting to local noise statistics, a non-parametric estimation of the noise-free image is computed that successfully handles non-stationary noise found in low-dose CT images. Using phantom and real low-dose CT images, effective noise suppression is shown to be accomplished while maintaining structures and details.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,