Article ID Journal Published Year Pages File Type
6920434 Computers in Biology and Medicine 2018 19 Pages PDF
Abstract
We introduce a deep learning architecture for structure-based virtual screening that generates fixed-sized fingerprints of proteins and small molecules by applying learnable atom convolution and softmax operations to each molecule separately. These fingerprints are further non-linearly transformed, their inner product is calculated and used to predict the binding potential. Moreover, we show that widely used benchmark datasets may be insufficient for testing structure-based virtual screening methods that utilize machine learning. Therefore, we introduce a new benchmark dataset, which we constructed based on DUD-E, MUV and PDBBind databases.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , , ,