Article ID Journal Published Year Pages File Type
6920772 Computers in Biology and Medicine 2016 8 Pages PDF
Abstract
The surgical term “turbinectomy” encompasses many variations in the location and extent of removal. As a systemic approach to consider the negative impact of middle turbinectomy(MT), such as the excessive removal of turbinate, airflows inside a pre-surgery model and a series of virtual surgery models were numerically analyzed and compared. These models simulate three variations of partial MT(three bilateral and three unilateral) with varying resection volume and location. Each middle turbinectomy results in alterations of flow and thermal parameters, such as nasal resistance (NR), velocity, temperature, wall shear stress(WSS) and wall heat transfer(WHT). WSS distributions were also considered in connection with mucosal secretion. The tendency of changes in nasal functions and airflow characteristics was identified with respect to resection volume and location. A counter-rotating vortical structure was seen in the region of widened middle airway for the case of total resection of middle turbinate. Maximum velocity and WSS near sphenopalatine ganglion, which was a possible explanation for headache after total resection of middle turbinate, was increased. Changes in NR and WHT for bi-lateral resection cases were greater than those for unilateral resection cases. While the physiological changes in four partial MT models were insignificant, changes in near total resection model was prominent. Although our surgical simulation was done for a single case, we postulate that the removal of the anterior inferior part of middle turbinate while preserving posterior margin will not alter airflow characteristics extensively. These findings will help designing surgical plans for partial MT.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,