Article ID Journal Published Year Pages File Type
6921042 Computers in Biology and Medicine 2016 28 Pages PDF
Abstract
Nasopharyngeal carcinoma (NpC) is rare in the west but common in Southeast Asia and only a few other locations. With the limited geographic incidence, it is relatively under-studied. It also has as co-determinant the Epstein-Barr virus (EBV), which may adapt to NpC therapies, so not only must a therapeutic compound be found, the discovery process must be rapid, to cope with the changing basis of the EBV. An R-based computer workbench, Mendel, was developed so biologists could quickly upload genomic data, pre-process them, and identify upregulated and downregulated genes. Mendel was used on 10 control and 31 diseased cell lines to discover 3 differentially expressed genes (DEGs) that meet thresholds on fold-changes, 3-clique membership, pathway constraints, and druggability. From the DEGs, we conducted a pharmacophore-based screening of 22,723,923 compounds using protein-protein interaction anchor-residue clusters as binding sites. Of the 4 hits, 3 passed all the ADME-Tox tests. These 3 hit compounds, 6-(4-iminiocyclohexa-2,5-dien-1-ylidene)-4-(thiazol-2-ylcarbamoyl)-1H-pyrimidine-2-thiolate, 1-[4-[2-[(3R)-3-hydroxy-2-oxo-indolin-3-yl]acetyl]phenyl]-3-phenyl-urea, and (2R)-N4-[4-(1-piperidyl)cyclohexyl]morpholine-2,4-dicarboxamide have predicted pIC50 values superior to the current drugs fluorouracil (5-FU) and taxotere, which have side effects and face EBV drug resistance.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,