Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6921124 | Computers in Biology and Medicine | 2015 | 9 Pages |
Abstract
Phase-Contrast (PC) velocimetry Magnetic Resonance Imaging (MRI) is a useful modality to explore cardiovascular pathologies, but requires the automatic segmentation of vessels and the measurement of both lumen area and blood flow evolutions. In this paper, we propose a semi-automated method for extracting lumen boundaries of the carotid artery and compute both lumen area and blood flow evolutions over the cardiac cycle. This method uses narrow band region-based active contours in order to correctly capture the lumen boundary without being corrupted by surrounding structures. This approach is compared to traditional edge-based active contours, considered in related works, which significantly underestimate lumen area and blood flow. Experiments are performed using both a sequence of a homemade phantom and sequences of 20 real carotids, including a comparison with manual segmentation performed by a radiologist expert. Results obtained on the phantom sequence show that the edge-based approach leads to an underestimate of carotid lumen area and related flows of respectively 18.68% and 4.95%. This appears significantly larger than weak errors obtained using the region-based approach (respectively 2.73% and 1.23%). Benefits appear even better on the real sequences. The edge-based approach leads to underestimates of 40.88% for areas and 13.39% for blood flows, compared to limited errors of 7.41% and 4.6% with our method. Experiments also illustrate the high variability and therefore the lack of reliability of manual segmentation.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Jean-Baptiste Fasquel, Aldéric Lécluse, Christine Cavaro-Ménard, Serge Willoteaux,