Article ID Journal Published Year Pages File Type
6922007 Computers, Environment and Urban Systems 2013 10 Pages PDF
Abstract
This paper investigates the use of Landsat ETM+, remotely sensed height data, ward-level census population, and dwelling units to downscale population in Riyadh, Saudi Arabia. Regression analysis is used to model the relationship between density of dwelling units and built area proportion at the block level and the coefficients used to downscale density of dwelling units to the parcel level. The population distribution is estimated based on average population per dwelling unit. Seven models were fitted and compared. First, a conventional approach, using ISODATA-classified built land cover alone as a covariate, is used as a benchmark against which to evaluate six more sophisticated models. The conventional model results in low accuracy measured by overall relative error (ORE) (+116%). Approaches for potentially increasing accuracy are explored, incorporating above-surface height data into the downscaling process. These include masking out zero and near-zero height areas when estimating built area; using height to estimate the number of floors; replacing the ISODATA model with a support vector machine; estimating volume-adjusted habitable space; stratifying the study area into different building categories; and preservation of the dependent variable for the best model. These approaches result in large increases in accuracy in the density of dwelling unit estimates. However, while the height data accounts for the vertical dimension (primarily through the number of floors), it is not possible to account for variation in dwelling density which arises due to other factors such as living standards, affluence and other spatially varying factors, without further data.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,