Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6922348 | Computers & Geosciences | 2016 | 12 Pages |
Abstract
In this study, a variance based sensitivity analysis method was used to investigate parameter sensitivities and flow partitioning of three conceptual hydrological models simulating 31 Irish catchments. We compared two established conceptual hydrological models (NAM and SMARG) and a new model (SMART), produced especially for water quality modeling. In addition to the criteria that assess streamflow simulations, a ratio of average groundwater contribution to total streamflow was calculated for all simulations over the 16 year study period. As observations time-series of groundwater contributions to streamflow are not available at catchment scale, the groundwater ratios were evaluated against average annual indices of base flow and deep groundwater flow for each catchment. The exploration of sensitivities of internal flow path partitioning was a specific focus to assist in evaluating model performances. Results highlight that model structure has a strong impact on simulated groundwater flow paths. Sensitivity to the internal pathways in the models are not reflected in the performance criteria results. This demonstrates that simulated groundwater contribution should be constrained by independent data to ensure results within realistic bounds if such models are to be used in the broader environmental sustainability decision making context.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Eva M. Mockler, Fiachra E. O'Loughlin, Michael Bruen,