Article ID Journal Published Year Pages File Type
6922463 Computers & Geosciences 2016 8 Pages PDF
Abstract
A geochemical LBM model has been developed to simulate the CO2 injection in homogeneous porous media in our previous work. That model has the ability to investigate the coupled reactive transport processes with reactants and products ions transport, matrix dissolution, and dissolution induced porosity change. In the present work, the model is extended to study the reactive transport properties in “fractured” media. Two kinds of fractures are investigated: one is straightforward along the centerline, and the other is inclined. The reaction rate distribution and evolution are analyzed at different time steps. The dissolution property of fracture edges is also studied, the bottom edge dissolution rate is generally higher than that of the upper edge in inclined fractured media. The porosity change becomes more and more obvious with the increase of time steps, as well as the edge porosity profiles. For the different fracture width, the dissolution rate and edge porosity become higher with the increase of fracture width. All the results show that the present model has the capability to numerically investigate CO2 injection and reactive transport in fractured reservoirs.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,