Article ID Journal Published Year Pages File Type
6922584 Computers & Geosciences 2015 9 Pages PDF
Abstract
Enhanced tidal currents around islands appear to present the potential for power extraction. In this research, a three-dimensional numerical model is applied to investigate the naturally occurring tidal dynamics and the extractable energy from turbines close to Zhaitang Island, located off the east coast of China. In the model, the effect of tidal turbine is represented by a horizontal thrust and added to the momentum equations. To determine a better configuration of turbine array, a detailed work has been undertaken to investigate the combined influences of the topographic features and array arrangement on the performance of power generation. First, three single row arrays are examined with lateral spacing being 2, 3 and 4 times rotor diameters. Then, corresponding to each lateral spacing, three multi-row arrays in a staggered manner with longitudinal spacing being 5, 10 and 15 times rotor diameters are developed. It has been found that single row arrays with higher local blockage outperform arrays with lower blockage. While for multi-row arrays, the performance of inside turbine is significantly experienced the wake influence of upstream turbines, which can be weakened with an increment of turbine spacing. And a remarkable improvement of turbine performance is observed as the longitudinal spacing increases to 10 times rotor diameters. However, the change pattern of power extraction is mainly dependent on that of naturally kinetic energy when the turbine density is further decreasing in the given region.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,