Article ID Journal Published Year Pages File Type
6922809 Computers & Geosciences 2014 16 Pages PDF
Abstract
In this paper the detailed comparison of the performance of nature-inspired optimization methods and Levenberg-Marquardt (LM) algorithm in ANNs training is performed, based on the case study of water temperature forecasting in a natural stream, namely Biala Tarnowska river in southern Poland. Over 50 variants of 22 various metaheuristics, including a large number of Differential Evolution, as well as some Particle Swarm Optimization, Evolution Strategies, multialgorithms and Direct Search methods are compared with LM algorithm on ANN training for the described case study. The impact of population size and some control parameters of particular metaheuristics on the ANN training performance are verified. It is found that despite widely claimed large improvement in nature-inspired methods during last years, the vast majority of them are still outperformed by LM algorithm on the selected problem. The only methods that, based on this case study, seem competitive to LM algorithm in terms of the final performance (but not speed) are Differential Evolution algorithms that benefit from the concept of Global and Local neighborhood-based mutation operators. The streamwater forecasting performance of the neural networks is adequate, the major prediction errors are related to the river freezing and melting processes that occur during winter in the mountainous catchment under study.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,