| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 6926012 | Information Processing & Management | 2018 | 12 Pages |
Abstract
Web 2.0 allows people to express and share their opinions about products and services they buy/use. These opinions can be expressed in various ways: numbers, texts, emoticons, pictures, videos, audios, and so on. There has been great interest in the strategies for extracting, organising and analysing this kind of information. In a social media mining framework, in particular, the use of textual data has been explored in depth and still represents a challenge. On a rating and review website, user satisfaction can be detected both from a rating scale and from the written text. However, in common practice, there is a lack of algorithms able to combine judgments provided with both comments and scores. In this paper we propose a strategy to jointly measure the user evaluations obtained from the two systems. Text polarity is detected with a sentiment-based approach, and then combined with the associated rating score. The new rating scale has a finer granularity. Moreover, also enables the reviews to be ranked. We show the effectiveness of our proposal by analysing a set of reviews about the Uffizi Gallery in Florence (Italy) published on TripAdvisor.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Simona Balbi, Michelangelo Misuraca, Germana Scepi,
