Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6926067 | Information Processing & Management | 2018 | 12 Pages |
Abstract
Opinion mining in a multilingual and multi-domain environment as YouTube requires models to be robust across domains as well as languages, and not to rely on linguistic resources (e.g. syntactic parsers, POS-taggers, pre-defined dictionaries) which are not always available in many languages. In this work, we i) proposed a convolutional N-gram BiLSTM (CoNBiLSTM) word embedding which represents a word with semantic and contextual information in short and long distance periods; ii) applied CoNBiLSTM word embedding for predicting the type of a comment, its polarity sentiment (positive, neutral or negative) and whether the sentiment is directed toward the product or video; iii) evaluated the efficiency of our model on the SenTube dataset, which contains comments from two domains (i.e. automobile, tablet) and two languages (i.e. English, Italian). According to the experimental results, CoNBiLSTM generally outperforms the approach using SVM with shallow syntactic structures (STRUCT) - the current state-of-the-art sentiment analysis on the SenTube dataset. In addition, our model achieves more robustness across domains than the STRUCT (e.g. 7.47% of the difference in performance between the two domains for our model vs. 18.8% for the STRUCT)
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Huy Tien Nguyen, Minh Le Nguyen,