Article ID Journal Published Year Pages File Type
6928596 Journal of Computational Physics 2018 12 Pages PDF
Abstract
A class of discrete time random walks has recently been introduced to provide a stochastic process based numerical scheme for solving fractional order partial differential equations, including the fractional subdiffusion equation. Here we develop a Monte Carlo method for simulating discrete time random walks with Sibuya power law waiting times, providing another approximate solution of the fractional subdiffusion equation. The computation time scales as a power law in the number of time steps with a fractional exponent simply related to the order of the fractional derivative. We also provide an explicit form of a subordinator for discrete time random walks with Sibuya power law waiting times. This subordinator transforms from an operational time, in the expected number of random walk steps, to the physical time, in the number of time steps.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,