Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6930409 | Journal of Computational Physics | 2016 | 16 Pages |
Abstract
We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. In this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Vadim Lisitsa, Vladimir Tcheverda, Charlotte Botter,