Article ID Journal Published Year Pages File Type
6930929 Journal of Computational Physics 2016 24 Pages PDF
Abstract
High-order accurate finite difference schemes are derived for a non-linear soliton model of nerve signal propagation in axons. Two types of well-posed boundary conditions are analysed. The boundary closures are based on the summation-by-parts (SBP) framework and the boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP-SAT approximation is time-integrated with an explicit finite difference method. The accuracy and stability properties of the newly derived finite difference approximations are demonstrated for an analytic soliton solution.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,