Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6931354 | Journal of Computational Physics | 2015 | 33 Pages |
Abstract
We apply the proposed unified framework to three different PDEs: the convection-diffusion-reaction equation, the Maxwell equation in frequency domain, and the Stokes equation. The purpose is to present a step-by-step construction of various HDG methods, including the most economic ones with least trace unknowns, by exploiting the particular structure of the underlying PDEs. The well-posedness of the resulting HDG schemes, i.e. the existence and uniqueness of the HDG solutions, is proved. The well-posedness result is also extended and proved for abstract Friedrichs' systems. We also discuss variants of the proposed unified framework and extend them to the popular Lax-Friedrichs flux and to nonlinear PDEs. Numerical results for transport equation, convection-diffusion equation, compressible Euler equation, and shallow water equation are presented to support the unification framework.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Tan Bui-Thanh,