Article ID Journal Published Year Pages File Type
6931628 Journal of Computational Physics 2015 24 Pages PDF
Abstract
A novel method for capturing two-dimensional, thin, under-resolved material configurations, known as “filaments,” is presented in the context of interface reconstruction. This technique uses a partitioning procedure to detect disconnected regions of material in the advective preimage of a cell (indicative of a filament) and makes use of the existing functionality of the Multimaterial Moment-of-Fluid interface reconstruction method to accurately capture the under-resolved feature, while exactly conserving volume. An algorithm for Adaptive Mesh Refinement in the presence of filaments is developed so that refinement is introduced only near the tips of filaments and where the Moment-of-Fluid reconstruction error is still large. Comparison to the standard Moment-of-Fluid method is made. It is demonstrated that using filament capturing at a given resolution yields gains in accuracy comparable to introducing an additional level of mesh refinement at significantly lower cost.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,