Article ID Journal Published Year Pages File Type
6933863 Journal of Computational Physics 2013 21 Pages PDF
Abstract
In our earlier papers, Prosperetti's seminal Physalis method for fluid flows was extended to directly resolve electric fields in finite-sized particles and to investigate accurately the mutual fluid-particle, particle-particle, and particle-boundary interactions for circular/spherical particles. For the first time, the method makes the accurate prediction of the local charge distribution, force and torque on finite-sized particles possible. In the present work, the method is extended to heterogeneous mixtures of elliptical particles to further investigate the effects of the orientation and anisotropy. The direct resolution of the effect of fields in heterogeneous mixtures of elliptical particles to determine local and global properties and responses has many applications in engineering, mechanics, physics, chemistry, and biology. The method can be applied to heterogeneous materials, heterogeneous functional materials, microfluidics, and devices such as electric double layer capacitors. In the present paper, the accuracy of the method is extensively investigated even for very challenging problems, for example, for elongated rod-like particles with very high aspect ratios. The accuracy and efficiency of the method suggests that it can be used for many important applications of broad interest.
Keywords
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,