Article ID Journal Published Year Pages File Type
6935760 Transportation Research Part C: Emerging Technologies 2018 18 Pages PDF
Abstract
The connected environment provides driving aids to help drivers making efficient and safe driving decisions. The literature to date is devoid of conclusive evidences of the connected environment's impact on drivers' mandatory lane-changing (MLC) behaviour. As such, the objective of this study is to examine MLC behaviour through a driving simulator experiment using the CARRS-Q Advanced Driving Simulator. Participants with diverse background performed the experiment in randomised driving conditions: baseline (without the driving aids), connected environment with perfect communication, and connected environment with communication delay. Repeated measure ANOVA in the form of linear mixed model and Generalized Estimation Equation (GEE) are employed to analyse various driving performance indicators during MLC event. We find that drivers in the connected environment tend to wait longer, increase the initial speed, and maintain a larger spacing, compared to when they are driving in the baseline condition. In addition, drivers in the connected environment are likely to reject fewer number of gaps and select relatively bigger gap sizes. Furthermore, post-encroachment time (PET) in the connected environment is higher across different gap sizes, indicating that the connected environment makes MLC safer. The GEE model on gap acceptance suggests that the perfect communication and communication delay has positive and negative impact on the accepted gap size, respectively, and the GEE model on lane-change duration indicates that lane-change duration tends to increase in the connected environment.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,