Article ID Journal Published Year Pages File Type
6936524 Transportation Research Part C: Emerging Technologies 2016 15 Pages PDF
Abstract
Due to the limited cruising range of battery electric vehicle (BEV), BEV drivers show obvious difference in travel behavior from gasoline vehicle (GV) drivers. To analyze BEV drivers' charging and route choice behaviors, and extract the differences between BEV and GV drivers' travel behavior, two multinomial logit-based and two nested logit-based models are proposed in this study based on a stated preference survey. The nested structure consists of two levels: the upper level represents the charging decision, and the lower level shows the route choices corresponding to the charging and no-charging situations respectively. The estimated results demonstrate that the nested structure is more appropriate than the multinomial structure. Meanwhile, it is observed that the initial state of charge (SOC) at origin of BEV is the most important factor that affects the decision of charging or not, and the SOC at destination becomes an important impact factor affecting BEV drivers' route choice behavior. As for the route choice behavior when BEV has charging demand, the charging station attributes such as charging time and charging station's location have significant influences on BEV drivers' decision-making process. The results also show that BEV drivers incline to choose the routes with charging station having less charging time, being closer to origin and consistent with travel direction. Finally, based on the proposed models, a series of numerical analysis has been conducted to verify the effect of range anxiety on BEV charging and route choice behavior and to reveal the variation of comfortable initial SOC at origin with travel distance. Meanwhile, the effects of charging time and distance from origin to charging station also have been discussed.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,