Article ID Journal Published Year Pages File Type
6938471 Journal of Visual Communication and Image Representation 2016 16 Pages PDF
Abstract
Accurate image segmentation is an essential step in image processing, where Gaussian mixture models with spatial constraint play an important role. Nevertheless, most methods suffer from one or more challenges such as limited robustness to noise, over-smoothness for segmentations, and lack of flexibility to fit the observed data. To address these issues, in this paper, we propose a generative asymmetric Gaussian mixture model with spatial constraint for image segmentation. The asymmetric distribution is modified to be easily incorporated the spatial information. Then our asymmetric model can be constructed based on the posterior and prior probabilities of within-cluster and between-cluster. Based on the Kullback-Leibler divergence, we introduce two pseudo-likelihood quantities which consider the neighboring priors of within-cluster and between-cluster. Finally, we derive an expectation maximization algorithm to maximize the approximation of the data log-likelihood. We compare our algorithm with state-of-the-art segmentation approaches to demonstrate the superior performance of the proposed algorithm.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,