Article ID Journal Published Year Pages File Type
6938474 Journal of Visual Communication and Image Representation 2016 11 Pages PDF
Abstract
In this paper, we propose a feature discovering method incorporated with a wavelet-like pattern decomposition strategy to address the image classification problem. In each level, we design a discriminative feature discovering dictionary learning (DFDDL) model to exploit the representative visual samples from each class and further decompose the commonality and individuality visual patterns simultaneously. The representative samples reflect the discriminative visual cues per class, which are beneficial for the classification task. Furthermore, the commonality visual elements capture the communal visual patterns across all classes. Meanwhile, the class-specific discriminative information can be collected by the learned individuality visual elements. To further discover the more discriminative feature information from each class, we then integrate the DFDDL into a wavelet-like hierarchical architecture. Due to the designed hierarchical strategy, the discriminative power of feature representation can be promoted. In the experiment, the effectiveness of proposed method is verified on the challenging public datasets.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , , ,