Article ID Journal Published Year Pages File Type
6938496 Journal of Visual Communication and Image Representation 2016 27 Pages PDF
Abstract
Stereo matching has been studied for many years and is still a challenge problem. The Markov Random Fields (MRF) model and the Conditional Random Fields (CRF) model based methods have achieved good performance recently. Based on these pioneer works, a deep conditional random fields based stereo matching algorithm is proposed in this paper, which draws a connection between the Convolutional Neural Network (CNN) and CRF. The object knowledge is used as a soft constraint, which can effectively improve the depth estimation accuracy. Moreover, we proposed a CNN potential function that learns the potentials of CRF in a CNN framework. The inference of the CRF model is formulated as a Recurrent Neural Network (RNN). A variety of experiments have been conducted on KITTI and Middlebury benchmark. The results show that the proposed algorithm can produce state-of-the-art results and outperform other MRF-based or CRF-based methods.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, , , ,