Article ID Journal Published Year Pages File Type
6939228 Pattern Recognition 2018 35 Pages PDF
Abstract
When modeling multivariate data, one might have an extra parameter of contextual information that could be used to treat some observations as more similar to others. For example, images of faces can vary by age, and one would expect the face of a 40 year old to be more similar to the face of a 30 year old than to a baby face. We introduce a novel manifold approximation method, parameterized principal component analysis (PPCA) that models data with linear subspaces that change continuously according to the extra parameter of contextual information (e.g. age), instead of ad-hoc atlases. Special care has been taken in the loss function and the optimization method to encourage smoothly changing subspaces across the parameter values. The approach ensures that each observation's projection will share information with observations that have similar parameter values, but not with observations that have large parameter differences. We tested PPCA on artificial data based on known, smooth functions of an added parameter, as well as on two real datasets with different types of parameters. We compared PPCA to PCA, sparse PCA and to independent principal component analysis (IPCA), an atlas based method that groups observations by their parameter values and projects each group using PCA with no sharing of information between groups. PPCA recovers the known functions with less error and projects the datasets' test set observations with consistently less reconstruction error than IPCA does. In some cases where the manifold is truly nonlinear, PCA outperforms all the other manifold approximation methods compared.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,