Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6939642 | Pattern Recognition | 2018 | 8 Pages |
Abstract
Recent years have witnessed the promising efficacy and efficiency of hashing (also known as binary code learning) for retrieving nearest neighbor in large-scale data collections. Particularly, with supervision knowledge (e.g., semantic labels), we may further gain considerable performance boost. Nevertheless, most existing supervised hashing schemes suffer from the following limitations: (1) severe quantization error caused by continuous relaxation of binary codes; (2) disturbance of unreliable codes in subsequent hash function learning; and (3) erroneous guidance derived from imprecise and incomplete semantic labels. In this work, we propose a novel supervised hashing approach, termed as Robust Discrete Code Modeling (RDCM), which directly learns high-quality discrete binary codes and hash functions by effectively suppressing the influence of unreliable binary codes and potentially noisily-labeled samples. RDCM employs â2, p norm, which is capable of inducing sample-wise sparsity, to jointly perform code selection and noisy sample identification. Moreover, we preserve the discrete constraint in RDCM to eliminate the quantization error. An efficient algorithm is developed to solve the discrete optimization problem. Extensive experiments conducted on various real-life datasets show the superiority of the proposed RDCM approach as compared to several state-of-the-art hashing methods.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
Yadan Luo, Yang Yang, Fumin Shen, Zi Huang, Pan Zhou, Heng Tao Shen,