| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 6939727 | Pattern Recognition | 2018 | 32 Pages |
Abstract
Identification and bi-manual handling of deformable objects, like textiles, is one of the most challenging tasks in the field of industrial and service robotics. Their unpredictable shape and pose makes it very difficult to identify the type of garment and locate the most relevant parts that can be used for grasping. In this paper, we propose an algorithm that first, identifies the type of garment and second, performs a search of the two grasping points that allow a robot to bring the garment to a known pose. We show that using an active search strategy it is possible to grasp a garment directly from predefined grasping points, as opposed to the usual approach based on multiple re-graspings of the lowest hanging parts. Our approach uses a hierarchy of three Convolutional Neural Networks (CNNs) with different levels of specialization, trained both with synthetic and real images. The results obtained in the three steps (recognition, first grasping point, second grasping point) are promising. Experiments with real robots show that most of the errors are due to unsuccessful grasps and not to the localization of the grasping points, thus a more robust grasping strategy is required.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Vision and Pattern Recognition
Authors
Enric Corona, Guillem Alenyà , Antonio Gabas, Carme Torras,
