Article ID Journal Published Year Pages File Type
6939776 Pattern Recognition 2017 36 Pages PDF
Abstract
An exhaustive search of all classes in pattern recognition methods cannot be implemented in real-time, if the database contains a large number of classes. In this paper we introduce a novel probabilistic approximate nearest-neighbor (NN) method. Despite the most of known fast approximate NN algorithms, our method is not heuristic. The joint probabilistic densities (likelihoods) of the distances to previously checked reference objects are estimated for each class. The next reference instance is selected from the class with the maximal likelihood. To deal with the quadratic memory requirement of this approach, we propose its modification, which processes the distances from all instances to a small set of pivots chosen with the farthest-first traversal. Experimental study in face recognition with the histograms of oriented gradients and the deep neural network-based image features shows that the proposed method is much faster than the known approximate NN algorithms for medium databases.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
,