Article ID Journal Published Year Pages File Type
6939828 Pattern Recognition 2017 39 Pages PDF
Abstract
This paper introduces a novel type of features based on covariance descriptors - the convolutional covariance features (CCF). Differently from the traditional and handcrafted way to obtain covariance descriptors, CCF is computed from adaptive and trainable features, which come from a coarse-to-fine transfer learning (CFL) strategy. CFL provides a generic-to-specific knowledge and noise-invariant information for person re-identification. After training the deep features, convolutional and flat features are extracted from, respectively, intermediate and top layers of a hybrid deep network. Intermediate layer features are then wrapped in covariance matrices, composing the so-called CCF, which are integrated to the top layer features, called here flat features. Integration of CCF and flat features demonstrated to improve the proposed person re-identification in comparison with the use of the component features alone. Our person re-identification method achieved the best top 1 performance, when compared with other 18 state-of-the-art methods over VIPeR, i-LIDS, CUHK01 and CUHK03 data sets. The compared methods are based on deep learning, covariance descriptors, or handcrafted features and similarity functions.
Related Topics
Physical Sciences and Engineering Computer Science Computer Vision and Pattern Recognition
Authors
, ,